
THE HEP SOFTWARE FOUNDATION (HSF)

HSF-TN-2016-04
10.5281/zenodo.1469634

October 4, 2016

Vacuum Platform

A. McNab1

1University of Manchester

Abstract

This technical note describes components of the Vacuum Platform developed by
GridPP for managing VMs, including the $JOBOUTPUTS, VacQuery, and VacUserData
interfaces.

c© Named authors on behalf of the HSF, licence CC-BY-4.0.

http://creativecommons.org/licenses/by/4.0/

Contents

1 Introduction 1

2 Environment 2

3 Machine/Job Features 2

4 $JOBOUTPUTS 3
4.1 Shutdown Messages . 3

5 Image URLs 4

6 VacUserData templates 4

7 VacQuery 6
7.1 Factory messages . 6

7.1.1 factory query . 6
7.1.2 factory status . 6

7.2 Machine messages . 8
7.2.1 machines query . 8
7.2.2 machine status . 8

7.3 Machinetype messages . 9
7.3.1 machinetypes query . 9
7.3.2 machinetype status . 9

7.4 VacMon services . 10

8 APEL 10

9 GOCDB 11

10 Summary 11

1 Introduction

This technical note describes components of GridPP’s Vacuum Platform for managing
virtual machines (VMs) to run jobs for WLCG and other HEP experiments.

The $JOBOUTPUTS, VacQuery, and VacUserData interfaces are described, which have
been developed for managing the VM lifecycle. These are used by two GridPP software
systems, Vac and Vcycle, which can be described as VM lifecycle managers (VMLMs).

This note is written in terms of VMs, but the interfaces have been designed to be
generalise to other forms of logical machine in the future, such as Docker containers and
unikernels.

1

The term “resource provider” is used to refer to the entity which is able to take the
decision about creating each VM. That is, the decision about whether resources will be
provided or not. Typically, this is owner of an OpenStack or other cloud tenancy managed
by Vcycle or the manager of Vac VM factories. The term is not used here to refer to higher
or lower layers of resource provision in terms of legal owners of services and hardware,
funding agencies, operators of the site infrastructure etc.

A location at which VMs can be created managed by one or more VMLMs which are
cooperating to achieve a set of target shares is referred to as a “space”. This is equivalent
to a Compute Element (CE) at a Grid site, and spaces must be given CE-style DNS names
in DNS space available to the resource provider. However, it is not necessary to register
the space name in the corresponding DNS zone. For Vac, a space is a set of VM factory
machines which are communicating via VacQuery and may be said to be neighbours. For
Vcycle, a space corresponds to an OpenStack or similar tenancy or project, with a specified
endpoint to contact and identity tokens to use.

Each space is occupied by VMs which are instances of one or more “machinetype” that
the VMLM is able to create. Each machinetype corresponds to a specific combination of
VM boot image and contextualization.

2 Environment

Where possible, an approximation of OpenStack’s environment for VMs, which is derived
from EC2, should be provided. Any contexualization user data file required and a metadata
service should be provided via a “Magic IP” HTTP service at 169.254.169.254 from the
point of view of the VM. Monolithic VM images which do not use a user data file require a
metadata service to be able to discover the URLs of the $MACHINEFEATURES, $JOBFEATURES,
and $JOBOUTPUTS locations.

As not all IaaS cloud systems provide metadata services, VMs and VMLMs should
also implement the VacUserData substitutions described in section 6. These include
substitutions giving the URLs of the $MACHINEFEATURES, $JOBFEATURES, and $JOBOUTPUTS

locations.
VMLMs must ensure they support VMs which use Cloud Init contextualization.
VMs must not block access to the address 169.254.169.253, which is used by Amazon

for DNS and by Vac for the default route, the local DNS, and for the Machine/Job Features
HTTP service.

3 Machine/Job Features

The Machine/Job Features (MJF) mechanism described in [1] allows resource providers to
communicate information to batch jobs and virtual machines, including the number of
processors they are allocated and how long they may run for. The MJF terminology is
derived from batch job environments, and job equates to virtual machine when applied to
virtualized environments such as the Vacuum Platform.

2

Resource providers using the Vacuum Platform must make the MJF $MACHINEFEATURES

and $JOBFEATURES locations available over HTTP(S) rather than through a shared filesys-
tem, and should publish the URLs of these locations in OpenStack/EC2 machinefeatures

and jobfeatures metadata tags and using the VacUserData substitutions in the user data
files supplied to VMs.

The value of $JOBFEATURES/job id should be set to the VM UUID by the VMLM as
soon as it is known. For example, with Vac the UUID is chosen by VMLM and its value
can be set when the first $JOBFEATURES key/values are created. However with Vcycle
managing OpenStack, the VM UUID is only available after the VM has been created, and
is then recorded by Vcycle in the $JOBFEATURES directory it provides.

4 $JOBOUTPUTS

The $JOBOUTPUTS mechanism is an extension to Machine/Job Features by which the URL
of a location to which VMs can write status and log files is communicated to the VMs. This
value of the $JOBOUTPUTS URL should be given in the same way as the $MACHINEFEATURES
and $JOBFEATURES URLs, using a VacUserData substitution and an OpenStack/EC2
joboutputs metadata key.

Any log file which the VMs wish to make available to resource providers may be written
to the $JOBOUTPUTS location, for later examiniation in case of problems. All of these files
must have unique names, and are all written to the same level (“directory”) of the URL
space on the $JOBOUTPUTS HTTP(S) server. This mechanism is also used to provide the
shutdown message file described in the next section.

4.1 Shutdown Messages

When VMs finish, they should write a shutdown message file to
$JOBOUTPUTS/shutdown message containing one line of text without a trailing
newline character. This text consists of a three digit shutdown message code in the range
100-999, a space, and then a human-readable description of the message code.

The message code (and not the human-readable description) will be used by the
resource provider’s software to determine why the VM finished and whether to create
more VMs of this type in the immediate future as slots become available.

3

100 Shutdown as requested by the VM’s host/hypervisor
200 Intended work completed ok
300 No more work available from task queue
400 Site/host/VM is currently banned/disabled from receiving more work
500 Problem detected with environment/VM provided by the site
600 Grid-wide problem with job agent or application within VM
700 Transient problem with job agent or application within VM

Table 1: Shutdown codes and messages

The shutdown codes are designed to be extensible by the insertion of intermediate
numbers for finer-grained reporting. This is similar to the three digit response codes of
internet protcols such as SMTP and HTTP.

5 Image URLs

Experiments should provide the HTTPS URL of the image file required to boot their VMs,
which VMLMs should use. VMLMs should support both standard CAs and Internationl
Grid Trust Federation (IGTF) endorsed CAs when verifying the X.509 certificates used by
the relevant HTTPS webserver.

To avoid overloading these webservers, VMLMs must cache images by Last-Modified
time, and should use the HTTP If-Modified-Since mechanism when fetching images. If
this header is used, then it is acceptable to check the URL for updates each time a VM is
created.

Where the VMLM is unable to update the image used to boot the VMs itself, it should
attempt to verify that the image being used is current and refuse to create new VMs with
an old image. Typically this applies to IaaS cloud systems where users are unable to upload
new images, or a manual upload step is required. VMLM authors should consider how
resource providers will be made aware of this situation when it arises, but for scalability
reasons, the VMLM should not rely on the experiment suffering from VMs failing due to
an out of date VM image and then notifying resource providers.

6 VacUserData templates

In most cases, a generic image such as CernVM is used which then requires further
contextualization as the VM starts using a user data file supplied by VMLM. The VMLM
must be able to retrieve a template for the user data file from an HTTPS URL nominated
by the experiment each time a VM is to be created. That is, without any caching. The
VMLM must include an appropriate HTTP User-Agent header indicating the VMLM
implementation and version when making this request to allow experiments to monitor

4

which VMLM versions are in use. The VMLM should support both standard CAs and
IGTF-endorsed CAs when verifying the X.509 certificates used by the relevant HTTPS
webserver.

The VMLM must apply the following pattern based substitutions to the user data tem-
plate supplied by the experiment. These patterns are all in the form ##user data XXX##.

The following substitutions are performed automatically using data the VMLM holds
internally:

##user data space## Space name

##user data machinetype## Name of the machinetype of this VM

##user data machine hostname## Hostname assigned to the VM by the
VMLM

##user data manager version## A string giving the VMLM version

##user data manager hostname## Hostname of the VMLM

##user data manager machinefeatures url## $MACHINEFEATURES URL
(section 3)

##user data manager jobfeatures url## $JOBFEATURES URL (section 3)

##user data manager joboutputs url## $JOBOUTPUTS URL (section 4)

The VMLM must also provide a mechanism for the resource provider to specify strings
or files whose static values will be used in pattern substitutions required by the VM. These
patterns take the form ##user data option XXX## where XXX is an arbitrary string
consisting of letters, numbers, and underscores.

If the VM requires the address(es) of HTTP proxies to use with CernVM-FS, it must
expect this value as the special pattern ##user data option cvmfs proxy## The VM
must be able to accept compound CernVM-FS proxy expressions containing semicolon and
pipe characters. Typically this will involve placing the substitution pattern in appropriate
quotation marks within the user data template.

If the VM requires an X.509 proxy, it must expect that the special pattern
##user data option x509 proxy## will be replaced by the PEM encoded X.509 cer-
tificates and RSA private key which compromise the proxy. VMLMs should provide a
mechanism for creating X.509 proxies dynamically for each VM instance from a host or
robot certificate owned by the resource provider, with an X.509 proxy lifetime reflecting
the maximum VM lifetime.

The VM must not assume that any other grid, HEP middleware, or scripts are running
as part of the VMLM and able to provide dynamic values for pattern substitutions. For
example, it must not require that resource providers provide proxies with VOMS attributes
to the VM. If this is needed, the VM should use the proxy provided to obtain the VOMS
credentials itself, using software managed by the experiment within the VM.

5

7 VacQuery

The VacQuery protocol specifies queries and status messages which can be sent over UDP
as short JSON documents.

The principal use of the VacQuery protocol is to allow Vac factories to gather informa-
tion from their neighbours about what VMs are running for what machinetypes. This is
done using the machinetypes query and machinetype status UDP messages. Factory and
machine message pairs are also supported which can be used for automated or manual
monitoring of Vac-based sites.

VacQuery queries sent to Vac daemons take the form of JSON documents in packets
directed to the unused UDP port 995.1 Responses are sent to the UDP port from which the
query was sent. The protocol has been designed to keep JSON messages and IP headers
below the ethernet MTU of 1500 bytes to avoid fragmentation on local networks.

All dates/times in VacQuery messages are expressed as Unix seconds. That is, the
integer number of seconds since 00:00:00 1st Jan 1970.

7.1 Factory messages

The factory messages factory query and factory status are intended for monitoring the
state of the factories themselves, including generic Linux health metrics such as free disk
and CPU load. As well as manual queries by administrators, these messages may also be
used for automated Nagios-style monitoring and alarms.

7.1.1 factory query

The factory query message is sent to a factory to request a factory status message in
response.

message type “factory query”

vac version Name and software version of Vac

vacquery version Name and version of the VacQuery protocol

space Vac space name

cookie Freely chosen by the sender

7.1.2 factory status

factory status messages are returned in response to factory query messages directed to
a factory. They may also be generated spontaneously and sent to a VacMon service as
described in section 7.4.

The format and units of the disk and memory values are aligned with the values
returned by the relevant system calls and the /proc interface.

1In Roman numerals, V=5 and M=1000. 995 could be written as VM = 1000 - 5, although this violates
conventions invented in modern times.

6

message type “factory status”

vac version Name and software version of Vac

vacquery version Name and version of the VacQuery protocol

cookie Matching the value supplied by the recipient

space Vac space name

factory FQDN of the factory

time sent Time in Unix seconds

site Name of the site registered in the GOCDB, or the Vac space name if the
site is not registered

running cpus Number of processors assigned to running VMs

running machines Number of running VMs

running hs06 Total HS06 of running VMs

max cpus Maximum number of (logical) processors available to VMs

max machines Maximum possible number of VMs

max hs06 Maximum HS06 available to all VMs

boot time The time when the factory booted up in Unix seconds

factory heartbeat time Time of the last heartbeat created by the VM
factory agent in Unix secconds

responder heartbeat time Time of the last heartbeat created by the Vac-
Query responder service in Unix secconds

mjf heartbeat time Time of the last heartbeat created by the HTTP Ma-
chine/Job Features service in Unix secconds

metadata heartbeat time Time of the last heartbeat created by the HTTP
Metadata service in Unix secconds

vac disk avail kb Free space available in Vac’s workspace, in units of 1024
bytes

root disk avail kb Free space available on the root partition, in units of
1024 bytes

vac disk avail inodes Free inodes available in Vac’s workspace

root disk avail inodes Free inodes available on the root partition

load average The 15 minute load average on the factory

kernel version The kernel version of the factory

os issue A string identifying the operating system (typically the first line of
/etc/issue)

swap used kb Swap space in use on the factory, in units of 1024 bytes

swap free kb Free swap space, in units of 1024 bytes

mem used kb Physical memory in use on the factory, in units of 1024 bytes

mem total kb Free physical memory, in units of 1024 bytes

7

7.2 Machine messages

The machines query (plural) and machine status (singular) messages can be used to create
views of the VMs running within a Vac space, similar to the views from the top command
of running processes on a single host.

7.2.1 machines query

The machines query message is sent to a factory to request a machine status message for
each of its VM slots.

message type “machines query”

vac version Name and software version of Vac

vacquery version Name and version of the VacQuery protocol

space Vac space name

cookie Freely chosen by the sender

7.2.2 machine status

machine status messages are returned in response to machines query messages directed to
a factory.

message type “machine status”

vac version Name and software version of Vac

vacquery version Name and version of the VacQuery protocol

cookie Matching the value supplied by the recipient

space Vac space name

factory FQDN of the factory

num machines Number of machine status messages to expect from this
factory

time sent Time in Unix seconds

machine Hostname of the VM slot

state State of the current or most recent VM in this slot, as a string

uuid Lowlevel UUID, as used by libvirtd

created time Unix time of the VM’s creation

started time Unix time the VM entered the running state

heartbeat time Unix time when the VM was last observed to be running
(this is not the same as any heartbeat generated within the VM)

cpu seconds CPU seconds used by the VM

cpu percentage Recent CPU percentage use. May be over 100% for mulit-
processor VMs

8

hs06 Total HEPSPEC06 for the processors assigned to this VM

machinetype Name of the machinetype

shutdown message Any shutdown message given by the last VM to run in
this slot

shutdown time Unix time of the shutdown message

7.3 Machinetype messages

The machinetypes query (plural) and machinetype status (singular) messages are used by
factories to gather information from neighbours within the same Vac space about what
they are running, and outcomes of recently started VMs which have finished.

7.3.1 machinetypes query

The machinetypes query message is sent to a factory to request a machinetype status
message for each of the machinetypes it supports.

message type “machinetypes query”

vac version Name and software version of Vac

vacquery version Name and version of the VacQuery protocol

space Vac space name

cookie Freely chosen by the sender

7.3.2 machinetype status

machinetype status messages are returned in response to machinetypes query messages
directed to a factory. They may also be generated spontaneously and sent to a VacMon
service as described in section 7.4.

message type “machinetype status”

vac version Name and software version of Vac

vacquery version Name and version of the VacQuery protocol

cookie Matching the value supplied by the recipient

space Vac space name

factory FQDN of the factory

num machinetypes Number of machinetype status messages to expect from
this factory

time sent Time in Unix seconds

machinetype Name of the machinetype

running hs06 Total HEPSPEC06 of all the processors allocated to running
VMs for this machinetype on this factory

9

running machines Number of running VMs for this machinetype on this
factory

running cpus Number of CPUs allocated to running VMs for this machine-
type on this factory

num before fizzle Number of running VMs which have not yet reached
fizzle seconds

shutdown message Shutdown message given by the most recently created
VM for this machinetype on this factory which has finished

shutdown time Unix time of the shutdown message

shutdown machine Name of the VM slot associated with the shut-
down message

7.4 VacMon services

VacMon services receive factory status and machinetype status messages from Vac daemons
on UDP port 8884. These may be used for Ganglia-style monitoring of individual sites
or groups of sites. As VacQuery messages are sent as JSON documents, they may be
conveniently recorded in data stores such as ElasticSearch.

8 APEL

VMLMs should support reporting of usage to the central APEL service with messages
of the type “APEL-individual-job-message”. These are the records used for conventional
grid sites, rather than those developed for cloud resources.

VLMs must include the following in the messages:

FQAN VOMS FQAN specified by the experiment when configuring the space

SubmitHost Must be of the form [space name] + "/" + [vmlm] + "-" +

[VMLM host name], where “vmlm” is a lowercase name for the VMLM
software such as “vac”

LocalJobId VM UUID

LocalUserId VMLM hostname

Queue Name of the machinetype

GlobalUserName The space name converted to an X.500 DN with
DC components. For example, vac01.example.com would become
/DC=vac01/DC=example/DC=com

InfrastructureDescription Such as APEL-VAC or APEL-VCYCLE, with
APEL and then an uppercase name for the VMLM software.

Processors The number of virtual CPUs assigned to the VM.

10

APEL Sync records must also be sent, and these can conveniently be generated by
each VMLM instance from an archive of the individual job messages, as the SubmitHost
is unique to the VMLM instance in both cases.

In addition to grid-style APEL records generated by the VMLM, an underlying cloud
infrastracture may also be instrumented to submit cloud-style APEL usage records to the
cental APEL service. This is especially likely at sites participating in the EGI Federated
Cloud. In this case, resource providers must ensure that double counting is avoided by
disabling reporting from the VMLM to the central APEL service.

9 GOCDB

Spaces should be registered in the GOCDB entries for the site, using appropriate service
types. The service types uk.ac.gridpp.vac and uk.ac.gridpp.vcycle have been created
for Vac and Vcycle spaces.

Registration allows new Vacuum Platform resources to be discovered more easily by
experiments, and permits the declaration of downtimes for these services.

10 Summary

This note has described the various interfaces between virtual machines and virtual
machine lifecycle managers required by the Vacuum Platform. Three new interfaces
($JOBOUTPUTS, VacQuery, and VacUserData) have been introduced, and requirements
set out for the use of Machine/Job Features, APEL, and GOCDB with the platform.
Procedures for how experiments providing VMs should present their VM boot images and
contextualization are also explained.

References

[1] M. Alef et al, HSF-TN-2016-02 “Machine/Job Features Specification” (HEP Software
Foundation)

11

	Introduction
	Environment
	Machine/Job Features
	$JOBOUTPUTS
	Shutdown Messages

	Image URLs
	VacUserData templates
	VacQuery
	Factory messages
	factory_query
	factory_status

	Machine messages
	machines_query
	machine_status

	Machinetype messages
	machinetypes_query
	machinetype_status

	VacMon services

	APEL
	GOCDB
	Summary

