THE HEP SOFTWARE FOUNDATION (HSF)

HSF-TN-2018-01
June 22, 2018

HSF Platform Naming Conventions -
A Proposal

B. Hegner!

YCERN

Abstract

The note describes a proposal for a common platform naming scheme for HEP and
tools to automate the platform identification.

(© Named authors on behalf of the HSF, licence CC-BY-4.0.

http://creativecommons.org/licenses/by/4.0/

1 Rationale

Multiple ways of denoting hardware platform vs. compiler vs. operating-system vs. build
type combinations exist throughout the field of high energy physics. Quite often packages
with different naming conventions have to be combined and a significant amount of time is
spent to transform between these different conventions. Furthermore, this transformation
is error prone and has to be updated from time to time when new hardware platforms or
compiler implementations arrive.

2 Proposal

In the view of the fact that naming conventions are just agreements we propose to adopt
existing naming conventions wherever possible and useful.

We consider the following pieces as part of the convention. A build configuration is
denoted by the scheme

architecture — OS — compiler — buildtype

where architecture, OS, compiler, and buildtype are described in the following. Furthermore,
we propose a common tool that helps identifying and building these strings.

2.1 Architecture

Different OSes may call the same architecture by different names. We propose to rely on
the abstraction of the Python package platform, namely platform.machine(). This
translates to, e.g., x86_64 for current Intel and AMD CPUs. In cases where opti-
mized builds for a certain processor generation are required and software is not runable
on the generic architecture, the generic architecture should be replaced by architec-
ture+instructionset1+instructionset2.... For example x86_64+avzr2 denotes an x86_64
processor supporting the AVX2 instruction set. There exist no explicit conventions for the
instruction set across operating systems, thus we propose to create ad-hoc conventions.
In the Linux case the flags field of /proc/cpuinfo could be used. The instruction sets
mentioned should be ordered alphabetically to ensure consistency.

2.2 Operating System

The operating system (OS) is a combination of the name of the operating system itself
and its major version, e.g. ubuntul5 or slc6 in case a canonical abbreviation exists.
2.2.1 Linux

The name and version are as given by Python’s platform.linux distribution(), using
the short name of the distribution, transformed to all lower-case. This leads to names like
ubuntu, centos, fedora.

nota bene: Due to mistakes in the distribution of Scientific Linux CERN 6, this
convention identifies SLC as redhat. This is fized in the tool mentioned further below.

2.2.2 MacOS X

The name is set to macos and the version as given by the first two parts of
platform.mac_ver(), e.g. yielding macos1010.

2.2.3 Windows

The name is set to win and the version as given by the first two parts of
platform.win32 ver().

2.3 Compiler

The compiler is a combination of compiler name and compiler version. We propose to use
the self-given names of the compilers like gee, clang, msve, icc and adding the compiler
version indicating feature relevant versions. That can be major, minor version, and patch
version numbers for LLVM (e.g. clang350) or just major and minor version for GCC (e.g.
gce73). In case the system compiler is being used, the compiler should be denoted as
native.

2.4 Buildtype

The bwildtype denotes whether there is a debug build, an optimized build, or any other
special setting. We propose to use opt for ‘optimized‘ and dbg for debugging builds. The
buildtype can be used to specify further custom build options, e.g. the used C++ standard,
leading to opt+std14 or dbg+std18. In general, any special compile time setting can be
tracked in this name component.

2.5 Generic Cases

In some cases the mentioned components do not influence the build-artifacts created or are
not relevant. In those cases, the corresponding name component is replaced by the string
all. Examples are pure-Python packages that do not require compilation at install time.

3 Examples

x86_64-centos7-gccb5l1l-opt
x86_64-slc6-clang350-dbg

4 Identification tool — hsf_get_platform

As to simplify the adoption of these conventions, we provide a minimal command line tool
hsf_get_platform, that is able to identify architecture, operating system, and compiler in a
transparent way. It can be used to, e.g., auto-derive everything in a given environment or
to extract one part of the platform string

hsf_get_platform.py —-buildtype opt — "x86_64-ubuntulb-gcc49-opt"
hsf_get_platform.py --get compiler — '"gcc49".

5 Possible Extensions to denote Platform Compati-
bility

The proposed naming convention identifies a given platform. In many cases, different
platforms, however, may behave the same or yield compatible binaries.

For example, slc6 is compatible with sl6 and redhat6. Similarly, patch versions of
compilers are usually compatible with each other.

We provide an additional tool hsf _platform_compatibility to tell the compatibility
of platforms. The logic and mapping of these compatibilities cannot be derived from first
principles and thus has to be maintained actively. In the long view, the maintenance
burden should be shared across the community. It can be used like follows

hsf _platform_compatibility.py x86_64-slcb-gcc481-opt

x86_64-slc6-gcc48l-opt
— "0S’es slcb and slc6 are incompatible" + return code 1

6 Resources

Both of the tools mentioned are available at https://github.com/HEP-SF/tools.

Acknowledgements

We would like to thank Ben Couturier and Brett Viren for fruitful discussions and feedback
on earlier drafts.

https://github.com/HEP-SF/tools

	Rationale
	Proposal
	Architecture
	Operating System
	Linux
	MacOS X
	Windows

	Compiler
	Buildtype
	Generic Cases

	Examples
	Identification tool – hsf_get_platform
	Possible Extensions to denote Platform Compatibility
	Resources

