
HSF-TN-2020-01
July 29, 2020

10.5281/zenodo.3965549

Proposal for HSF Project Best
Practices

Benedikt Hegner, Ben Morgan, Graeme A Stewart

CERN, University of Warwick

Abstract
This technical note is a proposed list of best practices for HSF projects.
The main motivation is to ensure interoperability and usability of a given
project by other projects and being able to build consistent software stacks.
In addition it should make it easier for other developers to contribute to
existing projects.

c© Named authors on behalf of the HSF, licence CC-BY-4.0.

http://creativecommons.org/licenses/by/4.0/


Introduction

This technical note is a proposed list of best practices for HSF and other HEP
open source projects. The main motivation is to ensure interoperability and
usability of a given project by other projects and being able to build consistent
software stacks. In addition, it should make it easier for other developers to
contribute to existing projects. In the following we discuss different practices
and conventions that ease the life of

• developers and new contributors,
• end-users and other client projects.

Afterwards we provide a checklist of the proposals you may want to use for your
project. The proposals are mainly based on experience with the LCG software
projects and releases. You may find many of the points discussed here trivial.
However, people usually differ in what they consider trivial. The technical
recommendations in this document are tailored towards C++-based projects,
but can easily be mapped onto, e.g., Python-based projects.

Project Scope, Name and Visibility

On starting a project, make sure you have an idea of the project’s scope and goals.
Try to pick a name that is suitable for that. You need to ensure uniqueness, as
the name will be used to name software artifacts, like libraries, code namespaces,
error messages, etc. In addition, have a look around to see if it conflicts with
pre-existing trademarks for software products or services.

Though it sounds like a triviality, your project should be made known to the
community. For this, having a dedicated project website or another entry point
for information is essential. It should concentrate all the information useful for
users and developers. If possible, it should point at all the other information
listed in this document. It is important to find the right place to put information.
Try not to repeat yourself, as duplicated documentation can easily get out of
sync. Access to all sources of project information should be granted to search
engine spiders. Furthermore, the HSF working groups and software forum allows
you to present your project or ideas at any stage in its project lifecycle.

There is an excellent open source general guide that covers community interac-
tions, getting your project known and helping find new contributors, particularly
helpful for the sociology of successful open source projects.

i

https://opensource.guide/


Supporting Developers and Contributors

The following sections discuss points mainly relevant for project developers and
potential new contributors.

Code repository

The first requirement for an open-source project is fully versioned code in a
public repository. The code should be accessible in anonymous read-only mode
by everybody. Services like GitHub or GitLab provide it for free. In addition
efforts like hepforge or labs like CERN or DESY may host HEP-specific packages.
Services supporting a clone plus merge-request/pull-request workflow can be
extremely helpful to attract new contributors, as it is the current de-facto
standard for open software development. Try to make sure there are no barriers
to contributing in this way, e.g., lab hosted services may be more difficult for
users without accounts to use for merge requests.

License and Copyright

The ownership and copyright of the code has to be well defined and understood.
Host labs for experiments will often hold copyright on behalf of experiments and
projects that are not legal entities and this can simplify future life enormously.
In a second step, the code and software provided should be properly licensed in
order to be able to use code provided by others, and to allow people to re-use,
update, or improve the software you provide. The HSF technical note HSF-TN-
2016-01 (Software Licence Agreements HSF Policy Guidelines) discusses various
options. This is one of the topics that is typically ignored at the beginning of a
project and hard to fix afterwards.

Compilation and other commands

Compiling, installing and testing should each be - if possible - single-command
actions. In particular, making testing easy is important. A good place to put
the necessary information is a README file in the repository. Relying on
community standards like CMake make it easier for others to use and understand
the setup.

Testing

To improve on the quality of software, unit and integration testing are essential.
Having well-documented tests makes it as well easier for contributors to partici-
pate. They can check whether they break old features and can, with new tests,

ii

https://github.com
https://gitlab.com
https://www.hepforge.org/
http://hepsoftwarefoundation.org/technical_notes.html
https://www.cmake.org


document what their addition is supposed to do. Testing can also assist in the
triage and fixing of bugs. Tests can be written to reproduce reported issues and
fail when they occur, with subsequent fixes validated by the tests passing.

For unit tests plenty of software packages exist, of which gtest and catch are two
good choices for C++ projects. Integration tests running a software project in
a certain setup can take advantage of CTest (supplied as part of CMake) and
CDash or be driven by shell scripts. Ease of use is again important here, otherwise
tests tend not to be run. For example, CMake/CTest add dedicated test targets
to buildscripts so that running the tests is a simple matter of “building” the
target, e.g. make test when using Makefiles.

Continuous integration

As well as being available from the command line, tests of the code should run
on all pull/merge requests so that reviewers can immediately see if the proposed
changes break any known functionality. There are many options to do this, well
integrated with modern code repositories.

Communication and Reporting

A mailing list to contact developers is always useful, even as issue trackers
become also more capable of supporting discussions. It is better to have publicly
and anonymously accessible archives and to be open for subscription and posting
by the public.

Issue tracking

It is useful to provide an issue (bug) tracker for users and developers to interact
with, allowing a view of both open and closed tickets anonymously by the public.
Optimal solutions here are the issue tracking capabilities the code repository
itself (such as GitLab or GitHub), as solutions which integrate directly with the
code repository are much easier to use for both users and developers. CERN’s
JIRA service is an alternative.

Reference Guide

For developers it is important to have a good overview of provided interfaces,
existing classes, and implementation details. For this a reference guide is a
helpful tool. The de-facto standard for creating reference guides in C++ projects
is Doxygen.

iii

https://github.com/google/googletest
https://github.com/philsquared/Catch
http://www.cdash.org
https://www.atlassian.com/software/jira
http://www.doxygen.org/


Conventions and Workflows

Every project choses certain (coding) conventions and integration workflows.
While there is a plethora of possibilities, the concretely chosen conventions and
workflows should be documented visibly. A How to contribute document is good
practice. This is, as well, a nice place to add information where contributions by
others would be possible and desired.

Be prepared for using external (cloud) services

The project should be careful in its assumptions about the environment available
for development and testing, like access to extra storage or connections. Make it
easy to integrate your software into e.g. a container. Containers also help greatly
in deploying a continuous integration system, e.g., testing the build on different
Linux flavours.

End-users and client projects

Documentation

In addition to the already mentioned documentation, end-user focused docu-
mentation is important. A little checklist further below summarizes the most
important information to be given as part of the documentation.

Release Information

While developers (most of the time) know the changes between various releases,
it is important to document changes between releases for end-users. It turned
out to be a good policy to have multiple categories of releases, like production
releases, development releases, bug fix releases, etc. While each project may
have different conventions here, the chosen convention should be explained,
including its meaning in terms of changes to the project’s API and ABI . A
clear numbering scheme like “major.minor.patch” can support this (also known
as semantic versioning). For each release the supported compilers, supported
operating systems and required dependencies should be listed. This helps avoiding
frustrations on the user side.

Interaction with developers

To be able to interact with developers, both the already mentioned mailing list
and issue tracker are important and helpful. The required permissions to post

iv

https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Application_binary_interface
https://semver.org/


there should be as low as possible. Make it easy for people to give feedback and
to contribute.

Relocatability and co-existence of versions

Often a project has to be integrated into bigger software stacks. Being relocatable,
i.e. having no hard-coded absolute paths in any build artifact, is often a necessity
to deploy and distribute these stacks. To enable your project to become part
of such a software stack, try to make it relocatable. In addition your software
should not make too strong assumptions about its own location.

Usability and run-time settings

It should be straight forward for a user to set up and run your project. This can
for example be ensured by providing environment setup scripts, but the number
of environment variables required should be limited as far as possible.

Be prepared for using external (cloud) services

The project should be careful in its assumptions about the user environment, like
having access to extra storage or network connections. Like for the development
process, make it easy to integrate your software into e.g. a container.

Publications and References

Users of your software should be able to give credit to your work. Try to publish
your work in conference proceedings or journals such as Computing and Software
for Big Science so that it can be properly cited.

Making best practices easier - the HSF Template
Project

Many of the points mentioned are per se trivial, but need some infrastructure
to be set up. To assist new projects, an HSF project template was created. It
covers many of the technical points and provides some canonical or example
implementation for many of the issues. It is meant as open collection point of
ideas and proposals by the community.

v



Checklist

A little checklist of topics to consider is given here. Not every point applies
to every project, but it may give you a handle in improving the quality of the
software you provide.

Repository and code checklist

Topic Done Possible solution(s) Template

Public repository github, gitlab -
License + file MIT, Apache2 MIT, Apache2
README file Markdown, reStructuredText Yes
Reference guide Doxygen Doxygen
build scripts CMake CMake
Unit testing gtest, catch catch
Integration testing CTest, scripts CTest
version file headers headers
Relocatability strict policy Yes
environment setup (c)sh script -

Procedure and release checklist

The following list contains mostly “nice-to-have” points. Having them well-
defined and documented helps both developers as well as potential volunteer
contributors.

Topic Done Possible solution(s) Template

Defined workflow plenty
Automatic testing travis CI, gitlab CI -
Test run+reporting CTest,CDash CTest
Static Analysis clang-analyzer, SAS -

Website and information checklist

vi

https://github.com
https://gitlab.com
https://en.wikipedia.org/wiki/Markdown
http://docutils.sourceforge.net/rst.html
http://www.doxygen.org
https://www.cmake.org
https://github.com/google/googletest
https://github.com/philsquared/Catch
https://travis-ci.org
https://about.gitlab.com/gitlab-ci/
http://clang-analyzer.llvm.org
https://github.com/dpiparo/SAS


Topic Done Possible solution(s)

Website jekyll, github pages
How to contribute -
User manual markdown, doxygen
Reference manual doxygen
Bug tracker github, gitlab, jira
Mailing list google groups, e-groups
Link to repository -
List of releases -
List of supported OS+compilers -
List of pre-requisites -
Registered in HSF knowledge base -

Summary and Outlook

This document described a few best practices, and potential implementations.
Updates, additional points or corrections are very welcome.

vii

https://jekyllrb.com
https://pages.github.com

	Introduction
	Project Scope, Name and Visibility
	Supporting Developers and Contributors
	Code repository
	License and Copyright
	Compilation and other commands
	Testing
	Continuous integration

	Communication and Reporting
	Issue tracking
	Reference Guide
	Conventions and Workflows
	Be prepared for using external (cloud) services

	End-users and client projects
	Documentation
	Release Information
	Interaction with developers
	Relocatability and co-existence of versions
	Usability and run-time settings
	Be prepared for using external (cloud) services
	Publications and References

	Making best practices easier - the HSF Template Project
	Checklist
	Repository and code checklist
	Procedure and release checklist
	Website and information checklist

	Summary and Outlook

